Math Virtual Learning

Grade 8

Geometric Transformations: Dilations

April 23, 2020

Math 8
 Lesson: April 23, 2020

Objective/Learning Target:

I can describe the effect of dilations of two-dimensional figures using coordinates.

Warm Up－Bigger or Smaller：

Directions：For each dilation below decide whether the scale factor would produce a bigger image，smaller image，or the image would stay the same．

1．Dilation by a scale factor of 2
2．Dilation by a scale factor of 0.5
3．Dilation by a scale factor of 1
4．Dilation by a scale factor of $1 / 4$

Bigger Smaller

Bigger Smaller

Bigger Smaller

Bigger Smaller

Stay the Same
Stay the Same
Stay the Same
Stay the Same

Understanding Dilations

Take notes on a piece of paper as you watch this video.

How To: Dilation

A dilation can be done around any point. The most commonly used point is the origin at $(0,0)$. A dilation results in a figure that is the same shape, but not the same size. The pre-image and image are no longer congruent, but they are similar.

1) A figure (pre-image) is given to you and a rule For example, $A B C$ is our pre-image and the rule might say "dilate by a scale factor of 2".
2) Choose a point of the pre-image and plug the coordinates into the rule. Plot the new point of the image.
Point A is at $(-2,-2)$. The rule is $(x, y) \rightarrow(x \cdot 2, y \cdot 2)$, which turns it into (-2 $2,-2 \cdot 2$), or simply A^{\prime} is ($-4,-4$).
3) Repeat for all remaining points.

Points B and B', and points C and C' have been done.

Example 1: Dilation

dilation of 4

1. Will the pre-image with a scale factor of 4 be an enlargement or reduction?

Enlargement
2. List the ordered pairs of the pre-image.

$$
A(1,0) \quad J(-1,-1) \quad V(0,1)
$$

3. Multiply each pre-image ordered pair by the scale factor.

$$
\begin{aligned}
& A(1,0) \rightarrow(1 \times 4,0 \times 4) \rightarrow A^{\prime}(4,0) \\
& J(-1,-1) \rightarrow(-1 \times 4,-1 \times 4) \rightarrow J^{\prime}(-4,-4) \\
& V(0,1) \rightarrow(0 \times 4,1 \times 4) \rightarrow V^{\prime}(0,4)
\end{aligned}
$$

4. Graph the new ordered pairs to create the image. $A^{\prime}(4,0) \quad J^{\prime}(-4,4) \quad V^{\prime}(0,4)$

Practice 1

Link: Printable Graph Paper

Use the transformation rule to complete each problem.

1) dilation of 2
2) dilation of $1 / 2$
3) dilation of $1 / 4$

Practice 1: Answer Key

It is okay if the pre-image and image overlap!

$V^{\prime}(-2,-2), D^{\prime}(0,4), H^{\prime}(2,0)$

$D^{\prime}(0,1), L^{\prime}(0.5,2.5), W^{\prime}(2.5,2)$

$P^{\prime}(-1,-1), Q^{\prime}(-1,1), R^{\prime}(2,2), S^{\prime}(2,0)$

How To: Identify a Dilation Rule

1) Determine which points are your image and pre-image. PNDM is the pre-image. P'N'D'M' is the image.
2) Choose a point from your image and write the x and y values as the numerators of each ratio.

Pick point D' $(4,4)$ and write it as: $\underline{4}$ and 4
3) Use the coordinating point from your pre-image and write it as the denominator of a ratio.

Point $D(2,2)$ and write it as: $\frac{4}{2}$ and $\frac{4}{2}$
4) Reduce the ratio to its simplest form to find the scale factor.

Both of those fractions (ratios) reduce to 2 over 1, or 2 . So our scale factor is 2.
5) Repeat for each x and y value (on every point) of your figures, to ensure you have the correct scale factor,

Example 2: Identify the Dilation Rule

1. Decide if it is an enlargement or reduction.

Reduction

2. Identify points from the pre-image and image.

$$
\begin{array}{ll}
N(0,-1) \rightarrow N^{\prime}\left(0,-\frac{1}{2}\right) & W(-2,3) \rightarrow W^{\prime}\left(-1,1 \frac{1}{2}\right) \\
P(-4,-1) \rightarrow P^{\prime}\left(-2,-\frac{1}{2}\right) & U(-3,-5) \rightarrow U^{\prime}\left(-1 \frac{1}{2},-2 \frac{1}{2}\right)
\end{array}
$$

3. Compare image points to the pre-image points as ratios.

$\frac{0}{0}$	$\frac{-\frac{1}{2}}{-1}$	$\frac{-1}{-2}$	$\frac{1 \frac{1}{2}}{3}$	$\frac{-2}{-4}$	$\frac{-\frac{1}{2}}{-1}$	$\frac{-1 \frac{1}{2}}{-3}$	$\frac{-2 \frac{1}{2}}{-5}$
0							

4. Decide on the scale factor after simplifying ratio.

$$
\text { Scale Factor of } \frac{1}{2}
$$

Practice 2

Link: Printable Graph Paper

 Identify the transformation rule for each problem.

Practice 2: Answer Key

Dilation of 2
Dilation of 3
Dilation of $1 / 2$

Exit Ticket

Link: Printable Graph Paper

Dilate the figure MNOP by

a scale factor of $1 / 3$.
Check your answer on next page.

Exit Ticket Answer Key

$M^{\prime}(1,3), N^{\prime}(2,0), O^{\prime}(1,-2), P^{\prime}(-1,0)$

Additional Resources:

Video - Dilations on a Grid
Dilations on a Grid - Additional practice problems
Video - Dilation lesson
Dilations - Check your knowledge
Printable Graph Paper
Virtual Graph Paper

