

Math Virtual Learning

Grade 8

Geometric Transformations: Dilations

April 23, 2020

Math 8 Lesson: April 23, 2020

Objective/Learning Target: I can describe the effect of dilations of two-dimensional figures using coordinates.

Warm Up - Bigger or Smaller:

Directions: For each dilation below decide whether the scale factor would produce a bigger image, smaller image, or the image would stay the same.

1.	Dilation by a scale factor of 2	Bigger	Smaller	Stay the Same
2.	Dilation by a scale factor of 0.5	Bigger	Smaller	Stay the Same
3.	Dilation by a scale factor of 1	Bigger	Smaller	Stay the Same
4.	Dilation by a scale factor of 1/4	Bigger	Smaller	Stay the Same

Understanding Dilations

Take notes on a piece of paper

as you watch this video.

How To: Dilation

A dilation can be done around any point. The most commonly used point is the origin at (0,0). A dilation results in a figure that is the same shape, but not the same size. The pre-image and image are no longer <u>congruent</u>, but they are similar.

1) A figure (pre-image) is given to you and a rule For example, ABC is our pre-image and the rule might say "dilate by a scale factor of 2".

2) Choose a point of the pre-image and plug the coordinates into the rule. Plot the new point of the image.

Point A is at (-2,-2). The rule is $(x,y) \rightarrow (x \cdot 2, y \cdot 2)$, which turns it into (-2 $\cdot 2$, -2 $\cdot 2$), or simply A' is (-4, -4).

3) Repeat for all remaining points. *Points B and B', and points C and C' have been done.*

Example 1: Dilation

Click here (and scroll down): <u>Shape Dilation Animation</u>

dilation of 4

1. Will the pre-image with a <u>scale factor of 4</u> be an enlargement or reduction? Enlargement

2. List the ordered pairs of the pre-image. A(1,0) J(-1,-1) V(0,1)

3. Multiply each pre-image ordered pair by the scale factor.

 $\begin{array}{l} A \ (1, \ 0) \rightarrow (1 \ \times \ 4, \ 0 \ \times \ 4) \quad \rightarrow \ A'(4, 0) \\ J \ (-1, \ -1) \rightarrow (-1 \ \times \ 4, \ -1 \ \times \ 4) \rightarrow \ J'(-4, -4) \\ V \ (\ 0, \ 1) \rightarrow (0 \ \times \ 4, \ 1 \ \times \ 4) \rightarrow \ V' \ (0, 4) \end{array}$

4. Graph the new ordered pairs to create the image. A'(4,0) J'(-4,-4) V'(0,4)

Practice 1

Link: Printable Graph Paper

Use the transformation rule to complete each problem.

1) dilation of 2

Answers on next page

Practice 1: Answer Key

V'(-2,-2), D'(0,4), H'(2,0)

D'(0, 1), L'(0.5, 2.5), W'(2.5, 2)

P'(-1,-1), Q'(-1,1), R'(2,2), S'(2,0)

How To: Identify a Dilation Rule

1) Determine which points are your image and pre-image. *PNDM is the pre-image. P'N'D'M' is the image.*

2) Choose a point from your image and write the x and y values as the <u>numerators</u> of each ratio.

Pick point D'(4,4) and write it as: <u>4</u> and <u>4</u>

3) Use the coordinating point from your pre-image and write it as the <u>denominator</u> of a ratio.

Point D(2,2) and write it as: $\frac{4}{2}$ and $\frac{4}{2}$

4) Reduce the ratio to its simplest form to find the scale factor. Both of those fractions (ratios) reduce to 2 over 1, or 2. So our scale factor is 2.

5) Repeat for each x and y value (on every point) of your figures, to ensure you have the correct scale factor.

Example 2: Identify the Dilation Rule

1. Decide if it is an enlargement or reduction. Reduction

3. Compare image points to the pre-image points as ratios.

4. Decide on the scale factor after simplifying ratio. Scale Factor of $\frac{1}{2}$

Practice 2Link: Printable Graph PaperIdentify the transformation rule for each problem.

Answers on next page

Practice 2: Answer Key

Dilation of 2

Dilation of 3

Dilation of \frac{1}{2}

Exit Ticket

Dilate the figure MNOP by a scale factor of ¹/₃.

Check your answer on next page.

Link: Printable Graph Paper

Exit Ticket Answer Key

M'(1,3), N'(2,0), O'(1,-2), P'(-1,0)

Additional Resources:

Video - Dilations on a Grid

Dilations on a Grid - Additional practice problems

Video - Dilation lesson

Dilations - Check your knowledge

Printable Graph Paper

Virtual Graph Paper